“Cuando se pisa un terreno realmente nuevo, puede suceder que no solamente haya que aceptar nuevos contenidos, sino que sea preciso, además, cambiar la estructura de nuestro pensar”.

Werner Heisenberg
(1901-1976)
Introducción

Es imposible negar el desarrollo de la Ciencia y de la Tecnología en los últimos cien años y la repercusión que implica sobre la sociedad en general. Su influencia abarca ámbitos tan distintos como la política, la economía, la religión, la ética y la filosofía, entre otros. En particular, la Física ha revolucionado al mundo mediante nuevas teorías y descubrimientos que permiten explicar y predecir fenómenos a escalas tan pequeñas como el átomo y tan grandes como las galaxias.

En la presente Unidad abordaremos las aplicaciones actuales de la Física en varios campos: el económico, el biomédico y el militar, entre otros. En todos los casos, se relacionará con el desarrollo científico de nuestro país.

Preguntas orientadoras

- ¿Cuáles son los campos de trabajo de la Física del siglo XXI?
- ¿Qué hechos y descubrimientos generaron tal desarrollo de la Física?
- ¿En qué hechos y fenómenos cotidianos tenemos la presencia de la Física Moderna?
- ¿Cuál es la situación actual de la Física en nuestro país?
La Física, como todos los campos del conocimiento humano, ha cambiado a lo largo del tiempo. Hemos visto cómo se consolidaron los conceptos de la Mecánica, desde su origen en la antigua Grecia hasta el siglo XVII con principios básicos de la Dinámica de Newton. También analizamos cómo se fue construyendo e instalando en la sociedad la Termodinámica y el concepto de Energía, de gran aplicación actual.

Paralelamente, también se desarrollaron la Óptica, la Electricidad y el Magnetismo. Entre 1861 y 1873 Maxwell realizó una integración de la Electricidad y el Magnetismo que hasta ese momento se consideraban campos de estudios desvinculados. En su “Tratado de Electricidad y Magnetismo” predice en forma teórica la existencia de las “ondas electromagnéticas”. Veinte años más tarde serán corroboradas experimentalmente por Hertz.

Así, a lo largo de dos siglos se fue construyendo un edificio importante sostenido por dos grandes pilares, que fueron la Mecánica Newtoniana y la Teoría Electromagnética.

Pero nuevas situaciones, como el surgimiento del concepto de electrón, el descubrimiento del los rayos X y de la radiactividad, entre otros, dieron origen a otra gran revolución científica que tuvo lugar a partir de 1900.

Estos hechos, que no pudieron ser explicados por la Física Clásica, pusieron en cuestionamiento los conceptos físicos que se manejaban hasta ese momento. Se produce entonces una ruptura con la Física Clásica: la Física Moderna “ingresa” y aborda el estudio tanto a nivel macroscópico como a nivel microscópico de la materia. Las dos grandes teorías que nacen y se desarrollan en el siglo XX son la Teoría de la Relatividad de Einstein y la Teoría Cuántica.

a: Averigüe los principios básicos de la Teoría de la Relatividad y de la Teoría Cuántica.

b: Elabore un esquema conceptual donde se presenten brevemente sus principales características.

c: Formule tres preguntas por escrito sobre cuestiones que no haya entendido, para discutirlas con el resto del curso y con el docente.
El físico en el mundo actual

a: Imagine un científico y descríbalo. Específique en qué lugar supone que trabaja y qué tareas realiza.

b: Mencione algún físico que pueda recordar. Si es posible, indique en qué temas trabajaba (o trabaja).

A lo largo del tiempo, se ha generado una visión deformada de la ciencia, hasta llegar a pensar que los científicos son "seres especiales que están casi fuera de este mundo". Muchas veces se piensa en el físico como alguien que desarrolla investigación dentro de un laboratorio o en el mundo académico, con anteojos, guardapolvos y el pelo abultado y desprolijo. Indudablemente, la literatura de ciencia ficción y la televisión han influenciado profundamente en esta visión irreal. En ciertos casos, algunos científicos también han ayudado a formar esta imagen.

b: Mencione películas, series televisivas, dibujos animados y libros donde se muestra esta visión deformada de la imagen y de la labor de los científicos.

Pocos se imaginan que los físicos pueden desarrollar su profesión en ámbitos tan variados como empresas, consultorías, industrias y hospitales, donde trabajan en múltiples aspectos y sectores. Marketing, seguridad e higiene, medio ambiente, producción de energía, física médica, tecnologías de la información, electrónica, acústica, el mundo de la calidad, telecomunicaciones, etc.

En lo que se refiere al tipo de trabajos habituales en el mundo empresarial, las tareas que un físico desempeña son de índole muy diversa. Por un lado están los trabajos de gestión en departamentos de ventas, de marketing o de gestión de proyectos. En estas actividades, es fundamental el conocimiento técnico del producto o de los servicios ofertados por la empresa en cuestión. Por otro lado están los trabajos de tipo técnico como el control de calidad, el diseño de instalaciones, la higiene y seguridad, entre otros.

Realice una encuesta para analizar la imágenes que la población tiene de un científico. A partir de las respuestas obtenidas, analice sus posibles causas.
Los físicos en el campo de la economía: la Econofísica

Desde hace ya algunos años, el mundo de la economía y las finanzas ha comenzado a incorporar físicos para realizar estudios y modelos acerca de las relaciones económicas y de los flujos de capital. Su tarea consiste en simplificar la economía y considerarla como un “sistema complejo” cambiante. Desde esta perspectiva, los conocimientos y los modelos matemáticos pueden ayudar, en cierta medida, a predecir flujos de capitales, cambios en las tendencias sociales y en sus tipos de compras e inversiones, etc.

Un Sistema Complejo es aquel que tiene un gran número de “grados de libertad” o posibilidades. En este tipo de sistema, las variables relevantes no están claras, las reglas tampoco, y el resultado final a veces no es fácilmente verificable que sea el óptimo. El análisis de sistemas complejos incluye la construcción de modelos matemáticos que permitan establecer acciones directas en determinadas situaciones. Por ejemplo, se preparan modelos que traten de predecir qué caminos tomará una multitud ante un incendio en un estadio de fútbol, cómo responderá una masa crítica de personas ante una “corrida cambiaria”, de qué forma se pueden optimizar las rutas de distribución para las empresas de reparto en una gran ciudad, etc.

El sustento de los físicos que abordan los Sistemas Complejos es el mundo real, y en el mundo real la economía juega un papel central. Por ello, gran cantidad de sistemas complejos que se están atacando hoy en día tienen una traducción directa en términos económicos.

En algunos países, ya se está hablando de una nueva disciplina, la “Econofísica”, con nombre propio. Tiene que ver con la evolución de los mercados financieros, su predictibilidad, análisis de riesgos, toma de decisiones rápidas asistidas por ordenador, etc. El estudio de mercados en competencia, como el mercado eléctrico o el del gas, para obtener la máxima competitividad con una política de precios ajustada entra en este campo. Son numerosas las empresas que ya ofrecen productos y también las que están intentando abrirse camino.

La Física del consumo

Grandes empresas de marketing directo están recurriendo a físicos y matemáticos. Estos científicos desarrollan modelos matemáticos, que les permitan predecir, por ejemplo, hábitos de consumo. A continuación, te presentamos un artículo periodístico donde se manifiesta esta situación en nuestro país:
¿Qué es más fácil de predecir: un maremoto o la conducta de un consumidor frente a una góndola del supermercado?

Para Hugo Peña, uno de los responsables de investigación y desarrollo estadístico de Wunderman, una agencia de marketing relacional, las acciones humanas son más previsibles. Al menos, en lo que hace al consumo masivo en la Argentina.

Peña, un doctor en oceanografía física, habla con conocimiento de causa. (...) ¿Qué tienen que ver las ciencias duras con el marketing? Mucho. (...) En el laboratorio, gracias a los modelos de predicción, se advierte cuando un cliente está a punto de desertar hacia otra cadena. Hay pequeños datos, patrones que se repiten (como compras más espaciadas, etc.) (...)

“El comportamiento humano, en cuanto hábitos de consumo, es más previsible de lo que uno piensa”, coincide Máximo Rainuzzo, el número uno de otra compañía grande de marketing directo que también emplea en su equipo de 30 personas, a matemáticos, físicos y sociólogos (...)

Los sectores que más intensamente invierten en marketing relacional son los bancos, las aseguradoras, las ONGs y las privatizadas (...)

“A veces hay poca conciencia de que ganar un nuevo cliente es mucho más caro que mantener a uno viejo”, dice Jurado. A su lado, Peña, el oceanógrafo físico precisa: “es cinco veces más caro”.

ACTIVIDAD

a: ¿Cuál es la idea central del texto?

b: ¿Cuáles son las hipótesis en la que se sustenta este tipo de trabajo?

c: ¿Las predicciones que se realizan a partir de modelos matemáticos se pueden contradecir?

d: ¿Este tipo de actividad científica tiene posibilidades de influir positivamente en la inversión económica en ciencias?

e: ¿Debe ser lo económico el factor determinante de una política de desarrollo científico? Justifica tus respuestas.
La Física en el área biomédica

Una de las áreas en las que más se ha desarrollado la Física del último siglo es, indudablemente, en la Medicina. Principios y leyes de la Física se encuentran aplicados en numerosos equipos destinados al diagnóstico y al tratamiento.

Sin embargo, no es necesario pensar en complicados equipos de uso hospitalario para encontrar aplicaciones de la Física.

Un plano inclinado, un sistema de poleas o una palanca se encuentran fácilmente en la vida diaria y también en el área médica. La ley de la palanca se encuentra detrás del diseño de una simple tijera de cirugía y de los fórceps para sacar al recién nacido. Las poleas se utilizan para mantener en alto la pierna enyesada de un paciente y los planos inclinados se ubican para llevarlo en una silla de ruedas de un nivel a otro del hospital.

También encontramos el trabajo de físicos detrás de aparatos que miden y producen señales eléctricas. La actividad cerebral genera microcorrientes muy débiles. El estudio de estas señales requiere de varios electrodos y se lo conoce como “electroencefalografía”. Permite, por ejemplo, detectar patologías como la epilepsia o problemas para conciliar el sueño.

Así como pueden detectarse señales eléctricas provenientes del organismo, a veces es necesario entregarle corriente eléctrica a algún músculo para que este funcione y se contraiga. Por esta razón se ha inventado el “marcapasos” que consiste en un pequeño dispositivo implantable que funciona entregando pulsos eléctricos al músculo cardíaco cuando este no puede hacerlo por sí mismo. También, puede ser necesario entregar una gran cantidad de Energía (cientos de Joules) al corazón cuando deja de funcionar. Para ello se utiliza el llamado “resucitador” o “cardio-desfibrilador externo”, muy conocido por su aplicación en emergencias médicas.

ACTIVIDAD

:| Comente con su profesor y sus compañeros ¿Qué aplicaciones de la Física conoce en la Medicina? Señale la utilidad de dichas aplicaciones.

a :| Lleve al encuentro tutorial algunas imágenes que disponga o que consiga: pueden ser de radiografías, tomografías, ecografías, resonancias magnéticas y/o estudios de medicina nuclear.

b :| Observe algunas características físicas de las mismas. Tipo de imagen (vis tas o cortes), calidad de imagen, cantidad de imágenes, tipo de estudios, etc.

c :| Compare los diferentes tipos de imágenes.
Los Rayos X

Otra de las grandes aplicaciones de la Física en la medicina es el estudio de lesiones a partir de los Rayos X. Desde su descubrimiento en 1895 por Wilhelm Conrad Röntgen, se emplean para el diagnóstico de diversas patologías que pueden ser detectadas sin necesidad de operar al paciente. Estos rayos se generan en una ampolla de vidrio al vacío (en realidad a muy baja presión) en cuyo interior se produce una descarga eléctrica generada por un gran voltaje de más de 10.000 V.

En las últimas décadas se han desarrollado también otros métodos radiológicos. La mamografía, fundamentalmente para la detección precoz del cáncer de mama. La tomografía computarizada para obtener secciones (cortes transversales) a distintas alturas. Dichos cortes se obtienen a partir de un tubo de Rayos X que gira alrededor del paciente.

Los Rayos X son muy utilizados en diagnóstico. Sin embargo es un tipo de radiación que podría producir daños celulares y por esta razón se recomienda no realizar en exceso este tipo de estudios y avisar en caso de embarazo.

Medicina Nuclear y Radioterapia

En medicina nuclear se utilizan materiales radioactivos para diagnóstico y tratamiento de enfermedades. Los primeros estudios radiobiológicos en nuestro país fueron realizados en el año 1926 en el Instituto de Medicina Experimental, actual Instituto A. H. Roffo, dependiente de la Universidad de Buenos Aires.

En la desintegración de los materiales radioactivos, los núcleos atómicos emiten partículas y radiación de alta Energía como los rayos gamma. A continuación presentamos algunas características de las diferentes emisiones nucleares:
La radiación ionizante es capaz de “arrancar” electrones de los átomos, transformándolos en átomos ionizados o “iones”. La presencia de iones en los tejidos vivos podrían alterar los procesos biológicos. Por ello, antes de sacarse una placa de RX es imprescindible avisar al médico y al técnico si se está embarazada, así como también utilizar correctamente el equipo de protección que entregan los técnicos cuando se busca reducir la zona irradiada.

De las tres, la radiación gamma es la más penetrante y la menos ionizante. Por esta razón se la utiliza en el diagnóstico funcional del organismo. Para los estudios se inyecta al paciente un radiofármaco, sustancia química que es absorbida por ciertas partes del organismo y que emite radiación. Se coloca al paciente frente al conjunto de detectores de la “cámara gamma”. Luego se recibe la radiación y se obtiene la imagen del órgano. La sustancia radiactiva es eliminada naturalmente.

Al comienzo se obtenían imágenes planas (centellografía) que permitían al médico estudiar la biodistribución del radiofármaco. Hoy en día existen otras aplicaciones, como el SPECT, que permiten obtener imágenes en tres dimensiones de órganos como el hígado, los pulmones, el cerebro o hasta del corazón aunque se encuentre en constante movimiento.

La radioterapia es una técnica que utiliza las radiaciones nucleares para distintos tipos de cáncer. El haz de radiación gamma se dirige específicamente al tumor para eliminarlo, con gran cantidad de resultados favorables.

Los efectos de la radiactividad en los organismos biológicos dependen fuertemente de las dosis administradas. Excesos de radiación pueden ocasionar la ruptura de enlaces en moléculas, alteraciones en su estructura, en su funcionamiento normal y alteraciones en el ADN (información genética). Superar los límites estipulados puede producir la muerte de las células o la formación de nuevas células defectuosas. De allí que en este campo sea fundamental la presencia de un físico-médico que realice el cálculo de la dosis que se administrará a cada paciente en particular. En nuestro país, la Física Médica es un área todavía descuidada. Sin embargo, en los últimos años han surgido carreras de grado y de post-grado para formar especialistas en este campo.
Otro de los sistemas formadores de imágenes muy utilizados en la medicina es el “ecógrafo”. Este aparato consta de un emisor de ultrasonido cuya señal sonora emitida no es audible. Al ingresar al organismo, es reflejada internamente por algún órgano. La imagen se forma a partir de la señal recibida (eco). Los ecógrafos actuales también permiten obtener imágenes en tres dimensiones.

A diferencia de los Rayos X y gamma, este dispositivo puede ser utilizado durante el embarazo. Además, si bien la imagen no es muy nítida, permite realizar mediciones con total facilidad y en tiempo real. Los ecógrafos de última generación permiten además medir la velocidad de la sangre cuando viaja a través de una arteria, mediante el denominado “efecto Doppler”.

Finalmente, en los últimos años se comenzó a utilizar la Resonancia Magnética Nuclear (RMN) en medicina, si bien es un fenómeno que se conoce desde hace varias décadas.

Pídale a su tutor el Libro 4 de Ciencias Naturales de EGB y consulte las páginas 32 a 37 [Energía nuclear, Chernobyl].

Profesional realizando un Ecodoppler de vasos del cuello.
a: | A partir de los dispositivos analizados en este apartado, realice un cuadro de doble entrada indicando el nombre del aparato, los fundamentos físicos y sus aplicaciones. Profundice en otras fuentes.

b: | Averigüe cuáles de estos aparatos están en el hospital más cercano a su domicilio.

La Energía nuclear ha sido muy cuestionada a partir del accidente de Chernobyl, ocurrido en la Ex Unión Soviética, el 26 de abril de 1986.

¿Cuáles fueron las implicancias de esta catástrofe en la sociedad rusa y los debates que a nivel mundial se generaron? Averigüe cómo ocurrió este accidente y cómo incidieron los efectos de la radiación sobre la población, el ambiente, la sociedad, sobre la economía del país, etc.

Debido a accidentes como el de Chernobyl, muchos consideran que el futuro de la Energía nuclear se desvanece día a día.

¿Qué opina sobre las aplicaciones de la Física nuclear en el tema salud?

Para reafirmar el uso de la Energía nuclear, ¿cree que el Estado necesita implementar algunos cambios? Si es así, ¿cuáles?

¿Considera que la población está actuando responsablemente con respecto a la Energía nuclear? Justifique su respuesta.

¿Qué ventajas y desventajas económicas pueden surgir si se decide continuar con el desarrollo de la tecnología nuclear?

¿Y si se decide abandonar este desarrollo?

Busque información al respecto y presente un breve informe escrito a su profesor tutor.
Explique cómo supone que se originó el Universo. Comente según qué fuentes elaboró ese concepto.

La Astrofísica es un campo de investigación y desarrollo donde trabaja una importante cantidad de físicos de todo el mundo. Se realizan estudios de las formas, dimensiones y características de los astros, así como también de la constitución, evolución y condiciones físicas de su funcionamiento y dinámica.

Una tarea fundamental de los científicos es el desarrollo de modelos explicativos y predictivos que den cuenta de los fenómenos observados. Si bien la Astrofísica no busca necesariamente resolver problemas prácticos de hoy, mañana o pasado mañana, muchas de las investigaciones son de importancia práctica fundamental para nuestra sociedad. Tal es el caso del estudio de los ciclos solares y de la influencia de partículas que conforman el llamado “viento solar” en las telecomunicaciones. Lo mismo sucede con las millonarias inversiones en telescopios y radiotelescopios, que parecen ser un gasto superfluo. Pero, desde otro punto de vista, estos dispositivos son útiles para conocer y predecir trayectorias de meteoritos y su posibilidad de impacto contra nuestro planeta.

Decidir en qué proyectos científicos y tecnológicos el Estado debe invertir los fondos públicos requiere formación crítica de sus ciudadanos. Esto adquiere un matiz especial en países como el nuestro, donde los recursos económicos disponibles no son tan abultados como en otros.
El origen del Universo

Los temas de Astrofísica son ampliamente tratados en distintos medios de comunicación (revistas, programas de televisión, etc) en todo el mundo. Entre los más divulgados, encontramos los referidos a las teorías y modelos que intentan describir y explicar el origen y la estructura del Universo en el que vivimos.

La teoría del Big Bang trata sobre el origen y la formación del Universo y es la más aceptada actualmente. Entre sus hipótesis se afirma que el Universo se encuentra en expansión permanente, que ha cambiado con el tiempo y que en el pasado debió haber tenido un tamaño mínimo.

Sostiene, además, que se generó hace unos 15000 millones de años, a partir de una gran explosión (Big Bang). Por qué sucedió es un misterio. Toda la materia y la Energía presentes actualmente en el Universo estaban concentradas con una densidad y temperatura muy elevadas, quizás en un punto matemático sin ninguna dimensión. No es que toda la materia y la Energía del Universo estuvieran apretadas en un pequeño rincón del Universo actual, sino que el Universo entero ocupaba un volumen muy pequeño.

Como resultado de la continua expansión del Universo, su densidad y su temperatura han ido disminuyendo. Un segundo después de la explosión inicial, la temperatura descendió a unos diez mil millones de grados. Unos cien segundos después, la temperatura sería de unos mil millones de grados. Entonces comenzaron a formarse los núcleos de los átomos más simples: hidrógeno y helio. Un millón de años después, a unos pocos miles de grados, los electrones y los núcleos constituyeron los primeros átomos de hidrógeno y en menor medida, de helio.

a: Averigüe qué otras teorías físicas explican la estructura del Universo.

b: ¿Qué hipótesis hay sobre el fin del Universo? ¿Qué sostiene cada una?

c: ¿Qué implicancias puede tener la teoría del Big Bang en el ámbito religioso y filosófico? ¿Por qué?
¿Hay fuego en el Sol?

La vida en nuestro planeta está íntimamente ligada al Sol. El día y la noche, las estaciones del año, la fotosíntesis, las lluvias, las brisas marinas; todos estos fenómenos tienen su origen en la Energía liberada por el Sol. Pero... ¿cómo se producen la luz y el calor en el Sol? Es una pregunta que el hombre se hizo desde muy antiguo. La Astrofísica nos orienta ante una pregunta que parece tan simple. Pero primero sería interesante que intente formular su propia explicación al respecto.

A continuación, le presentamos algunos extractos del libro “Así funcionaba el Sol” (Horacio Tignanelli, 1998) donde se expresan varias hipótesis diferentes para explicar cómo se produce el calor y la luz en esta estrella:

Tanto el Sol como el fuego iluminan y dan calor y, uno por su lejanía y otro por su misma esencia, son intangibles. Ambos tienen colores semejantes y una existencia efímera: la llama acaba cuando ha consumido el leño, el Sol aparece y desaparece a lo largo de un día. La vinculación del Sol con el fuego puede considerarse también como un triunfo del pensamiento de los hombres. En los albores de la historia, decir que el Sol era de fuego constituyó un avance importante para tratar de explicar la esencia de los objetos del cielo (...)

Durante aquel siglo XIX, en cualquier escuela, y hasta en la mismísima Universidad, los profesores de negra toga enseñaban que el Sol generaba su luz y su calor quemando carbón en su ardiente interior.

Aquellos fueron tiempos de fogatas, lámparas de llama y velas; por otra parte, la combustión del carbón constituía la fuente de energía más usual entre las producidas artificialmente por los hombres (...) Para que el Sol funcionara a fuego, en el Sol debería existir una reserva gigantesca de carbón y oxígeno, además de bastante lugar para el anhídrido carbónico que ambos generarían en la combustión (...) Para entonces, los físicos habían podido estimar cuánta energía llegaba del Sol a la Tierra (...) Teniendo en cuenta las dimensiones solares, los cálculos señalaban que un Sol funcionando a fuego nos iluminaría sólo durante unos 1500 años, ya que habría Sol hasta que acabara su carbón interior (...) Evidentemente, un Sol de fuego no hubiese durado lo suficiente como para acompañar la historia de nuestra humanidad (...)

El tipo de materiales que se quemaba en el Sol, fue variando a medida que el hombre iba descubriendo distintas formas de producir fuego. De esa forma, hubo un Sol donde ardían los leños y luego un Sol de carbón encendido; luego hubo soles de petróleo y de gas, sustancias descubiertas a posteriori (...) Tal vez no se ha divulgado lo suficiente, pero la ciencia alcanzó a dar una respuesta diferente y más probable sobre la manera en que el Sol genera su energía. Llegar a entender el funcionamiento solar le demandó al hombre casi cien años de investigaciones y un número más grande de cambios conceptuales en su comprensión de los fenómenos de la naturaleza (...)

a :| Expriese cuál es la idea principal del texto.
b :| Enumere las hipótesis dadas en cada momento.
c :| Proponga una relación entre la formulación de hipótesis científicas y la situación social e histórica en la cual se formulan.
d :| Investigue cómo se explica actualmente la generación de luz en el Sol. Describa el proceso en no más de 10 renglones.

La Astrofísica y la ciencia ficción

El Universo es uno de los campos favoritos para los directores de películas, en especial para los amantes del cine de Ciencia-Ficción. En este tipo de películas, muchas veces se presentan situaciones que no concuerdan con lo que podemos constatar científicamente.

Se oyen ruidosas explosiones en medio del espacio exterior cuando esto es imposible. El sonido necesita un material para transmitirse y en el espacio exterior hay vacío (casi totalmente). También nos muestran haces de luz láser, cuando sólo podríamos verlos al entrar en contacto con algún material (por ello en las discos se esparce humo para ver los haces). Como estas, infinidad de otras situaciones.

Pídale a su tutor el Libro 4 de Ciencias Naturales de EGB y lea “La luz láser”, página 44.
Uno de los descubrimientos más importantes del siglo XX, sin duda fue el de la luz láser. Theodore Maiman lo consiguió el 9 de mayo de 1960, a partir de una barrita de rubí sintético de 2 cm de longitud y 1 cm de diámetro. Desde entonces, se obtiene el efecto láser mediante una gran cantidad de materiales.

El láser es un dispositivo para obtener radiación con características muy especiales. Consta de 3 componentes básicos:

- Un material que puede ser sólido, líquido o gaseoso.
- Una cavidad dentro de la cual se halla el material. Está formada por un par de espejos en sus extremos que permite que la luz láser oscile varias veces para amplificarse antes de salir.
- Un método artificial (por ejemplo una corriente eléctrica) para lograr que los electrones del material adquieran mayor Energía, fundamental para emitir luz láser.

Una vez que la radiación sale de la cavidad se tiene un haz de rayos láser, que se caracteriza por tener:

- **Gran direccionalidad**: la luz sale en el mismo sentido formando un haz concentrado. Puede recorrer grandes distancias sin abrirse demasiado.
- **Monocromaticidad**: el color de luz láser es muy puro y depende del material utilizado. Por ejemplo, el de helio-neón es rojo, mientras que el de argón es verde.
- **Gran intensidad de luz**.
Aplicaciones pacíficas del láser

El dispositivo tecnológico llamado “láser” tiene apenas un poco más de 40 años de existencia. En este corto tiempo de “vida”, sus aplicaciones se han multiplicado rápidamente a diversos campos. Todos estamos al tanto de algunas de las aplicaciones pacíficas y de los beneficios cotidianos que genera la utilización del láser, como por ejemplo:

- grabación y lectura de música en compact-disc
- lectura de precios de productos en los supermercados
- impresión de información escrita con alto nivel de resolución y rapidez
- soldaduras, perforaciones y cortes de elementos industriales
- corrección de miopía y otras enfermedades del ojo
- eliminación de manchas en la piel
- tratamiento de caries, etc.

Láser y desarrollo militar

Estamos acostumbrados a pensar en armas nucleares como la única relación de la Física con los fines bélicos y de defensa. Olvidamos los aspectos térmicos de las vestimentas y tanques; así como los cálculos de Energía de los alimentos necesarios para distintas operaciones. Tampoco pensamos en aspectos electromagnéticos como radares, equipos de radio y luces infrarrojas ni en las cuestiones aerodinámicas de los aviones. Existen muchas y variadas aplicaciones de esta ciencia en el campo militar. De todas maneras, sólo la Física Nuclear parece la responsable en las guerras.

En 1959, el láser no había sido inventado. Sin embargo, el Departamento de Defensa de Estados Unidos ya estaba interesado en las aplicaciones militares que podría tener. La compañía donde Maiman trabajaba en el desarrollo del primer láser tenía contactos frecuentes con el Gobierno por este tema. En abril de 1972 el mundo se enteró que los militares norteamericanos estaban utilizando bombas guiadas por láser en Vietnam. En las guerras contra Irak, su uso fue cosa habitual. Con un sofisticado equipo con luz láser, un soldado desde tierra puede apuntar el haz hacia un objetivo (puente, tanque, etc.). La luz que se refleja en el blanco puede ser captada por un avión de ataque y así ser guiado al objetivo.

Los fines militares absorbieron gran parte de los investigadores vinculados con el láser. Durante décadas, la mayor parte de los cargos para científicos jóvenes en esta área fueron financiados por el Departamento de Defensa y por los Laboratorios Nacionales de Estudios de Armamento Nuclear. Lo mismo sucedió en la ex Unión Soviética y en otros países tecnológicamente desarrollados. Incluso en la
Argentina, uno de los laboratorios más antiguos e importantes dedicado al láser depende, desde su origen, del CITEFA (Centro de Investigaciones Científicas y Técnicas de las Fuerzas Armadas). Actualmente, en muchos países hay grandes inversiones de dinero para desarrollos bélicos del láser. (Bilmes, 1994).

Con una visión ingenua, algunos sostienen que la finalidad de la ciencia es siempre éticamente neutra y que la responsabilidad recae en los gobiernos o individuos que utilizan los conocimientos científicos. Desde esta visión, los científicos no son responsables de las aplicaciones.

Existe también una postura más crítica: muchas veces, el desarrollo científico y tecnológico se realiza con fines bélicos desde el comienzo. En otras palabras, muchas veces, los científicos conocen qué se pretende realizar y cuáles serán sus aplicaciones inmediatas. Famoso es el caso de las investigaciones para producir la primera bomba atómica.

Robert Oppenheimer dirigió un grupo de físicos eminentes y en el invierno de 1945 tenían lista la bomba atómica. Al recordar la primera explosión nuclear en las pruebas en el desierto sostuvo que:

"Rondó mi mente un pasaje del Bhagavad-Gita: `Me he convertido en la muerte, la destructora de los mundos`. Pienso que todos nosotros sentíamos más o menos lo mismo".

† CITEFA, provincia de Buenos Aires.
Evidentemente, él sabía lo que había estado haciendo durante todos esos años. Pocos días más tarde de la primera prueba, el 6 de agosto de 1945, la bomba se lanzó sobre Hiroshima, Japón. Todos vieron el resultado. Tres días después, el 9 de agosto, se lanzó otra bomba sobre Nagasaki. Cerca de 200 mil personas murieron por las bombas. Todavía hoy quedan secuelas genéticas.

a: Haga un cuadro con aplicaciones pacíficas y bélicas del láser.

b: Interprete la afirmación de Arthur Schawlow (Premio Nobel de Física 1981 por sus trabajos sobre láser): “Ignoro cuáles son las aplicaciones militares de los láseres y no deseo sabertas”.

¿Qué críticas se le podrían hacer desde lo visto en el módulo? ¿Por qué?

c: Analice la veracidad de la siguiente frase: “Los descubrimientos de la ciencia son independientes de la utilización que se les dé”.

d: Interprete la siguiente afirmación de Maiman, inventor del láser: “El láser es una solución millonaria en busca de un problema”.

e: Para discutir: ¿Es importante la inversión económica en el desarrollo de tecnología militar? Exponga razones a favor y en contra. ¿Se invierte de la misma manera en otras áreas de desarrollo científico tecnológico? Fundamenta tu respuesta.
Física y desarrollo sustentable

La producción científico-tecnológica de un país es indispensable para alcanzar un desarrollo social sostenido. Sin embargo, países como el nuestro encuentran serias dificultades para conseguirlo. Le proponemos que lea y analice el siguiente artículo periodístico:

La neurona subsidiada

Los migrantes de los países del Tercer Mundo corporizan una millonaria transferencia de recursos en beneficio de los países desarrollados. [...] Un simposio organizado por la CEPAL (Comisión Económica para América Latina y el Caribe) en Costa Rica relacionó las migraciones con la transferencia de recursos.

Demógrafos de toda América coincidieron en que en los próximos años se profundizarán los movimientos humanos desde América Latina y el Caribe hacia los Estados Unidos. Entre los migrantes, por supuesto, están incluidos aquellos que son convocados a trabajar en los países más ricos en virtud de su formación y su talento. Y constituyen un subsidio encubierto que los países menos desarrollados aportan al crecimiento de los más poderosos [...]

Un veinte por ciento del total de argentinos radicados en Estados Unidos son profesionales [...]

En el diseño de políticas futuras los especialistas en migraciones han sustituido el concepto de fuga de talentos por la propuesta de estimular la circulación y el intercambio de cerebros que faciliten el trueque de los recursos altamente calificados entre los países de origen y los países desarrollados. Se busca convertir a los migrantes en nexos entre las redes locales y las redes globales de desarrollo científico y tecnológico, en agentes individuales o grupales de transferencia de conocimientos y tecnología [...]

© Clarín, La neurona subsidiada, 24 de setiembre de 2000.
a: | Subraye las dos o tres frases del artículo que más le interesaron. Explique por qué las eligió.

b: | ¿En qué sentido puede ser inadecuado el concepto de “fuga de cerebros”?

c: | ¿En qué sentido la partida de nuestros científicos constituyen un subsidio encubierto para los países más desarrollados?

d: | ¿Qué acciones es necesario instaurar para evitar que los científicos argentinos, al menos en parte, dejen definitivamente su país? ¿Es posible revertir la situación actual? ¿Cómo?

e: | ¿Qué tipos de inconvenientes (por factores internos y externos) considera que dificultan el desarrollo científico tecnológico de nuestro país?

f: | Invertir en la formación de científicos, ¿cómo contribuye a aumentar las capacidades industriales de una sociedad? ¿Cómo influye sobre el desarrollo económico general de un país?
La educación en ciencias

En los últimos años las sociedades han enfatizado la importancia de promover en los ciudadanos una alfabetización científica y tecnológica, pero...

¿Qué se entiende por “alfabetización científica”?

Si bien no hay una visión única y definitiva al respecto, hay cierto consenso social sobre las características de un ciudadano alfabetizado científica y tecnológicamente. En general se considera que es capaz, entre otras cuestiones, de:

- Utilizar conceptos científicos e integrar valores y saberes para adoptar decisiones responsables en la vida corriente.
- Comprender que la sociedad ejerce un control sobre las ciencias y las tecnologías por la vía de las subvenciones que le otorga.
- Reconocer tanto los límites como la utilidad de las ciencias y las tecnologías en el progreso del bienestar humano.
- Conocer los principales conceptos, hipótesis y teorías científicas, y ser capaz de aplicarlos.
- Saber reconocer la diferencia entre resultados científicos provisorios y opiniones personales.
- Comprender que el saber científico es histórico, contextualizado, provisorio y sujeto al cambio.
- Comprender las aplicaciones de las tecnologías y las decisiones implicadas en su utilización.
- Conocer fuentes válidas de información científica y tecnológica y recurrir a ellas cuando hay que tomar decisiones.
- Comprender que es necesaria e importante la educación en ciencias y tecnología.

ACTIVIDAD 126

Realice un análisis crítico de su propio aprendizaje en Física.

a: Indique con cuál de los objetivos propuestos al inicio del Módulo se relaciona cada una de las características anteriores.

b: Mencione en cuáles de los objetivos propuestos considera que ha conseguido mayores logros y en cuáles menos.

c: Reflexione sobre cuáles pueden ser las causas.

d: Presente sus conclusiones al profesor tutor en un informe escrito.
a: En un pequeño grupo: busque información sobre el funcionamiento de alguno de los siguientes dispositivos científico tecnológicos actuales. Prepare una exposición oral de quince minutos para explicar al resto del curso sus aspectos físicos, técnicos y su influencia en la sociedad actual:
- Computadora
- Teléfono celular
- Compact disc
- Horno de microondas
- Tevisor
- Tomógrafo de rayos X
- Cualquier otro que usted elija

b: Busque un artículo de Física Aplicada en diarios o revistas de divulgación científica:
1: Señale las principales ideas.
2: Explique los conceptos físicos involucrados.
3: Indique qué características de una alfabetización científico tecnológica se trabajaron durante esta actividad.
A modo de conclusión

“Hay días en que me levanto con una esperanza demencial, momentos en los que siento que las posibilidades de una vida más humana están al alcance de nuestras manos. Éste es uno de esos días”.

La resistencia (Ernesto Sabato)

A lo largo de estas páginas, hemos recorrido un intenso camino. Trabajamos sobre conceptos y procedimientos físicos. Pero también ubicamos la Física en el marco de una actividad humana, con su complejidad social, cultural, ideológica y económica.

La Física, como las Ciencias Naturales en general, no es la única ni la mejor manera de abordar el mundo. Sin embargo, sí es una forma importante de hacerlo. Apostar críticamente a la educación y al desarrollo de la investigación en Física puede ayudarnos a mejorar nuestra calidad de vida. Esperamos que ustedes también hayan aprendido y disfrutado a lo largo del camino que hemos recorrido. Desde ya, muchas gracias por habernos acompañado.

Saludos cordiales.

Los autores
Clave de corrección
La clave de corrección que presentamos a continuación intenta orientarlo sobre la dirección en la que se pueden buscar y trabajar las respuestas a las preguntas y/o ejercicios presentados a lo largo del módulo. Por ello, a veces podrá observar que se presentan sólo respondidos algunos items, otras veces se da alguna palabra o concepto orientador, y en algunos otros casos no se presenta clave dado que son de desarrollo personal o las respuestas se encuentran en el propio texto mediante una lectura minuciosa.

De elaboración personal: sería interesante comenzar analizando el texto leído y establecer relaciones con la situación actual. ¿Cuál es la situación de la ciencia en los países más pobres y en los más ricos? ¿Cómo influye el desarrollo científico tecnológico en el desarrollo económico? ¿Desarrollo científico tecnológico implica necesariamente desarrollo social?

ACTIVIDAD 2

ACTIVIDAD 8
a :| 1333,3 m/min; 22,22 m/s; 80000000 mm/h
b :| 9,46 \(\times 10^2 \) km

ACTIVIDAD 12
La ventaja de un plano inclinado es que se reduce el valor de la fuerza necesaria para subir objetos. La desventaja es que es necesario disponer de mayores espacios libres, y que debe recorrerse una distancia mayor. Para realizar una fuerza menor, es más conveniente un plano inclinado largo con un ángulo de inclinación pequeño.

ACTIVIDAD 13
a :| \(F = 37,5 \text{ kg} \)
b :| \(h = 2,5 \text{ m} \)
c :| El rozamiento exige la realización de una fuerza mayor. Habitualmente el rozamiento se reduce haciendo que la rampa del plano inclinado esté formada por cilindros de metal que pueden girar a medida que el objeto se desliza.
d :| Falso. Cuanto más pequeño sea el valor del ángulo (plano muy largo), el valor de la fuerza necesaria para elevar un objeto será mucho menor al peso del objeto. Si no respondió bien esta pregunta, revea la condición de equilibrio.

ACTIVIDAD 14
La fuerza necesaria es la misma en los dos casos, pero desde la terraza toda la fuerza se ejerce con los brazos, mientras que con una polea desde el suelo uno puede colgarse de la soga y utilizar el peso de todo el cuerpo para elevar el objeto.
Física

Polea móvil.

Polea fija: duplicar la fuerza.

Polea Fija: 50 kg
Polea movil: 25 kg
Aparejo Potencial de tres poleas en total: 12,5 kg \(n = 2 \) pues dos poleas son móviles, una debe ser fija.
Un aparejo factorial de 6 poleas en total: 8,33 kg \(n = 3 \) pues tres poleas son móviles y tres fijas.

Si existiera una barra suficientemente larga y resistente, y un punto de apoyo en el espacio donde fijar dicha barra, entonces la fuerza de Arquímedes en el extremo del brazo largo de la palanca bastaría para elevar la Tierra ubicada en el extremo del brazo más corto.

\[a : | \quad 2,25 \text{ m} \]
\[b : | \quad \text{La respuesta está en el texto.} \]

3 m

Ejemplo: el bíceps actúa como una palanca de tercer género porque la fuerza motriz ejercida por el músculo actúa entre el punto de apoyo (codo) y la resistencia (el peso del antebrazo que actúa en la zona media del antebrazo).

En los ascensores, grúas, montacargas, etc. La diferencia sustancial con épocas anteriores es que hoy se puede aprovechar la corriente eléctrica en lugar de la fuerza muscular.

La respuesta se encuentra en el texto.
La primera afirmación no es una hipótesis científica porque no hay manera de contrastarla, es un juicio personal. La tercera tampoco es una hipótesis científica porque es siempre verdadera: indudablemente tal vez llueva mañana (lloverá o no lloverá). Este último caso es el tipo de afirmaciones que se observan en los horóscopos: “probablemente se encuentre con un ser querido”, etc. Si te encuentras la afirmación es verdadera. Si no te encuentras también es verdadera porque era probable. Este tipo de afirmaciones no son hipótesis científicas. Un trabajo interesante sería analizar este tipo de afirmaciones en diarios, revistas, etc. y observar cómo en muchos casos utilizan lenguaje científico para ocultar la ausencia de rigor científico real.

Una hipótesis científica es, por ejemplo, la afirmación que sostiene que el Sol es de fuego.

Según la Física aristotélica las dos hojas deberían caer al mismo tiempo porque su peso es el mismo, lo cual evidentemente no sucede en nuestro planeta. Según la Física de Galileo no es el peso de las hojas el factor que determina el tiempo de caída: en este caso el factor que determina la diferencia de tiempos es el rozamiento con el aire. ¿Qué sucedería si este experimento se repitiera en la Luna?

A diferencia de Aristóteles, Galileo realizaba la validación de las afirmaciones científicas mediante la contrastación con la naturaleza (evidencia experimental). Esta concepción en la que se fundamentan las ciencias naturales actualmente.

La fuerza impulsora sólo actúa durante el contacto con el arco. Luego, en ausencia de fuerzas que lo frenen, la flecha continúa avanzando por inercia. En el caso real, el aire va frenándola paulatinamente.

No. Observar varios minutos una vela encendida no permitirá concluir que se debe al oxígeno. La existencia del oxígeno y su necesidad para la combustión de la vela fueron hipótesis previas a la observación. La observación de un determinado fenómeno puede generar que alguien formule una hipótesis (como al descubrir los rayos X), sin embargo no es lo habitual en ciencias. Miles de personas pueden observar caer manzanas, sin embargo no por ello sostendrán que la fuerza con la que la Tierra la atrae responde a la misma ley que la fuerza gravitatoria entre planetas lejanos. En general, la observación es posterior a la hipótesis. Por otro lado, ante la misma observación, dos personas diferentes pueden interpretar el fenómeno de muy distinta manera.
La Física aristotélica consideraba órbitas circulares porque eran manifestación de la perfección (sin principio ni fin). Kepler mediante evidencia experimental (datos de posiciones de astros) propone las órbitas elípticas.

Algunas afirmaciones que sostiene la Física y que son contrarias a nuestra intuición:

::: El tiempo de caída de los objetos no depende del peso de los objetos.
::: No es necesaria la acción de una fuerza continuamente para que un objeto se desplace, etc.

Entre los grandes conceptos que debieran estar presentes en el esquema podemos mencionar: leyes del movimiento aristotélico, modelos astronómicos, inercia, caída de los cuerpos, formas de validación del conocimiento científico.

ACTIVIDAD 43

ACTIVIDAD 45

ACTIVIDAD 46

ACTIVIDAD 48

ACTIVIDAD 49

ACTIVIDAD 51

ACTIVIDAD 52

a :| Fuerzas (fuerzas económicas), equilibrio, inercia (inercia económica), flujo, etc.
b :| Algunas respuestas posibles:
::: Considerar que se pueden explicar y anticipar movimientos económicos mediante la simple aplicación de conceptos como el de fuerzas productivas (como si fueran fuerzas físicas) y flujo de capitales.
::: Considerar que se pueden controlar las variables sociales y los resultados de la aplicación de determinados modelos de la misma manera que al realizar un experimento en física.
Pensar que la aplicación de procedimientos útiles en determinado contexto histórico y social pueden ser aplicados en todo momento y a cualquier grupo humano como si fuera la reproducción de un procedimiento de laboratorio.

Otro riesgo importante es considerar que los resultados económicos estadísticos son suficientes, sin tener presente que variables socioeconómicas como el hambre no pueden ser analizadas sólo desde el punto de vista estadístico.

La respuesta está en el texto.

La trayectoria del atleta con respecto al suelo puede considerarse rectilínea (estrictamente, su centro de gravedad sube y baja periódicamente). Los planetas se desplazan en trayectorias elípticas mientras que el niño sentado en una calesita se mueve en una trayectoria circular. La trayectoria del proyectil ideal es una parábola.

<table>
<thead>
<tr>
<th>ACTIVIDAD 59</th>
</tr>
</thead>
<tbody>
<tr>
<td>a: El vector velocidad puede variar en módulo (acelerador, freno) y en dirección (volante).</td>
</tr>
<tr>
<td>b: 77,77 km/h</td>
</tr>
<tr>
<td>c: 100 km/h; 50 km/h; 100 km/h; 80 km/h</td>
</tr>
<tr>
<td>d: 6,66 km</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ACTIVIDAD 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>a: La velocidad es la variación de posición por unidad de tiempo. La aceleración es la variación de velocidad por unidad de tiempo.</td>
</tr>
<tr>
<td>b: No.</td>
</tr>
<tr>
<td>c: (\text{am} = 2 \text{ m/s}^2)</td>
</tr>
<tr>
<td>d: Velocidad final es 0 m/s. Observar que la aceleración es negativa. El tiempo de detención es de 7 segundos.</td>
</tr>
</tbody>
</table>

La primera y la tercera: la velocidad varía linealmente.

<table>
<thead>
<tr>
<th>ACTIVIDAD 63</th>
</tr>
</thead>
<tbody>
<tr>
<td>b:</td>
</tr>
<tr>
<td>1 :</td>
</tr>
<tr>
<td>2 :</td>
</tr>
</tbody>
</table>

El rozamiento es insignificante debido a la ausencia de atmósfera. Cayeron más lentamente y al mismo tiempo.
ACTIVIDAD 65

- **g** lunar aproximadamente 1,62 m/s².

ACTIVIDAD 66

- **a:** 122,5 m
- **b:** Una forma sería dejando caer el objeto desde lo alto y medir el tiempo de caída para luego calcular la altura por medio de la ecuación correspondiente.
- **c:** 3,7 seg

ACTIVIDAD 69

- **c:** Se triplica.
- **d:** Se reduce a la mitad.

ACTIVIDAD 70

$F = 60 \text{ N}; \quad F = 0,8 \text{ m/s}^2$ hacia la derecha.

ACTIVIDAD 72

- **a:**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **b:** Podría medir, por ejemplo, 5 cm; donde la escala sería de 100 N/cm.
- **c:** Sí, con una escala de 200 N/cm.
- **d:** La Normal y el Peso se representan con la misma longitud y en sentido contrario, por ser fuerzas de igual valor que se anulan entre sí, equilibrando el sistema.

ACTIVIDAD 73

Ganará el equipo 1 dado que ejerce una fuerza total de 300 N contra una fuerza de 290 N del equipo 2.

ACTIVIDAD 74

- **b:** Hacia atrás y hacia abajo.
- **c:** Porque actúan sobre cuerpos diferentes.
- **d:** Por ejemplo: un elemento del rifle acciona sobre la bala empujándola hacia delante y la bala actúa sobre el rifle empujándolo hacia atrás (reacción).
ACTIVIDAD 76
a: 491,5 N. En el Ecuador su peso será menor porque g es menor: 9,78 m/s2.
b: La masa del carro es de 25,51 kg. Luego, la aceleración es de 1,96 m/s2.
c: Sólo la fuerza gravitatoria (peso del objeto).
d: Suponiendo que no hay rozamiento con el aire, en ambos casos, sólo actúa sobre la pelota su peso.

ACTIVIDAD 77
a: Llegará más alto en la Luna suponiendo que se lo lanza con la misma velocidad inicial que en la Tierra.
b: No.
c: Aceleración gravitatoria.

ACTIVIDAD 78
a: No, aunque la balanza indicaría un peso menor.
b: Falso.
c: Una persona de 70 kg de masa tiene un peso de 686,7 N en la Tierra. En la Luna tendría la misma masa y su peso sería de 113,4 N.

ACTIVIDAD 79
a:
1: El mismo.
2: $T = 60$ J
3: Para calcular el trabajo al subir las escaleras, debe calcular el trabajo realizado por su propio peso (trabajo de la fuerza peso). La distancia que tiene que tomar en cuenta es la altura que se desplazó dicha fuerza y no la longitud de la escalera.
b: Fuerza que realiza el trabajo “en la dirección de la distancia recorrida”, distancia recorrida.

ACTIVIDAD 82
a:
1: Su límite es arbitrario, sus elementos son el Sol, planetas, asteroides principalmente. Se relacionan fundamentalmente mediante fuerzas gravitatorias.
2: Existen intercambios de materia (Alimentación, transpiración, etc.) y energía (calor corporal, radiación solar, etc.) con el medio externo.

ACTIVIDAD 83
a: $Ec = 9000$ J
b: $F = 343$ N
c: $V = 42,43$ m/s
En todos los casos sería el mismo valor.

En el caso del automóvil la Energía se obtiene a partir del combustible en forma de Energía química que genera el movimiento de los pistones del motor y del auto. La Energía se transformó en Energía de movimiento (cinética). También en Energía calórica y sonora.

En una manzana colgando de un árbol podemos identificar, por ejemplo, Energía química, Energía potencial gravitatoria dada la altura sobre el piso (si lo tomamos como referencia cero), etc.

En una montaña rusa, la Energía eléctrica se transforma en Energía cinética para elevar el carro y en Energía potencial gravitatoria. Durante la caída, la Energía gravitatoria disminuye aumentando la Energía cinética (disminuye la altura y aumenta la velocidad). Además existe liberación de Energía al medio ambiente en forma de calor y sonido.

Supondremos el cero de Energía potencial gravitatoria en el suelo, entonces:

a: Falso.
b: Verdadero (pues no hay disipación por rozamiento).
c: Verdadero.
d: Falso.
e: Falso (se conserva la Energía total).

La respuesta se encuentra en el texto.

a: P = 125 W

Según la definición de Maxwell, toda la Energía es capaz de realizar trabajo. Sin embargo, el Segundo Principio de la Termodinámica sostiene que todo el trabajo puede convertirse íntegramente en calor, pero la Energía calórica no puede transformarse totalmente en trabajo. En otras palabras, no toda la Energía es capaz de realizar trabajo.
Ejemplo: la Energía del viento está directamente asociada con la Energía cinética del aire en movimiento. Puede aprovecharse para mover embarcaciones, obtener agua de un pozo en el campo, etc.

c: Falso. La ciencia no es neutral.
d: Una de las razones del rápido desarrollo del láser ha sido la gran posibilidad de ganancia económica que presentó desde sus orígenes, incluso antes de conocerse sus aplicaciones concretas.
Bibliografía

A continuación le presentamos los nombres de algunos textos que podrán serle útiles a lo largo de su trabajo con el Módulo para consultar algunas dudas, ampliar sus saberes en relación con el lenguaje o enriquecer las actividades propuestas. Recurra a su docente tutor o al bibliotecario para que lo ayude en la búsqueda del material que le interese.

- Cromer, Alan, *Física para las ciencias de la vida*. México, Reverté, 1998
- Sears, Francias; Zemansky, Mark; Young, Hugh, *Física universitaria*. Delaware, Addison Wesley Iberoamericana, 1988.
Ministerio de Educación, Ciencia y Tecnología de la Nación

EQUIPO DE EDUCACIÓN DE JÓVENES Y ADULTOS

RESPONSABLE DE LA ARTICULACIÓN DEL PROYECTO
Mirta Leon

LECTURA DE LOS MATERIALES
Pablo Courreges
Herminia Ferrata
Mirta Leon
Esther Levy
Gabriela Miasnik
Heliana Rodríguez
José Romero
Alejandra Santos

EQUIPO DE PRODUCCIÓN EDITORIAL -DNPC-

COORDINACIÓN GENERAL
Laura Gonzalez

SUB COORDINACIÓN
Verónica Gonzalez
Silvia Corral
Clara Batista
Mariana Velázquez
Fernando García Guerra

ASISTENCIA DE PRODUCCIÓN

DISEÑO DE COLECCIÓN

ASISTENCIA EN DISEÑO

Física

COORDINACIÓN
Silvia Corral

ARMADO
Valeria Seoane
Diego Vaisberg

ILUSTRACIONES
Charlie Lorenz

FOTOGRAFÍAS

AGRADECIMIENTOS: Dra. Rosalía Quintana del Centro De.Di.Ac., Dr. Jorge Formón, Ecografías 3D y 4D, Sr. Ricardo Lanzani, CITEFA.
El presente material fue elaborado por los Equipos Técnicos de la Dirección de Educación de Adultos y Formación Profesional de la Dirección General de Cultura y Educación de la Provincia de Buenos Aires.

El Ministerio de Trabajo, Empleo y Seguridad Social brindó apoyo financiero para la elaboración de este material en el marco del Convenio Más y Mejor Trabajo celebrado con el Gobierno de la Provincia de Buenos Aires.

Se agradece la colaboración de los docentes y directivos de los Centros Educativos de Nivel Secundario de la provincia de Buenos Aires que revisaron y realizaron aportes a las versiones preliminares de los materiales.
Material de distribución gratuita